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Abstract25

Purpose: The accuracy and robustness of numerical models of geo-26

logic CO2 sequestration are almost never quantified with respect27

to direct observations that provide a ground truth. This study28

presents CO2 injection experiments in meter-scale, quasi-2D tanks29
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with porous media representing stratigraphic sections of the sub-30

surface, compared to numerical simulations of those experiments.31

Goals: Evaluate (1) the value of prior knowledge of the sys-32

tem, expressed in terms of ex-situ measurements of the tank33

sands’ multiphase flow properties (local data), with respect to34

simulation accuracy; and (2) the forecasting capability of the35

matched numerical models, when applied to different settings.36

Methods: Match three versions of a numerical simulation model—each37

with access to an increasing level of local data—to a CO2 injec-38

tion experiment in Tank 1 (89.7×47×1.05 cm). Matching is based39

on a quantitative comparison of CO2 migration at different times40

from timelapse image analysis. Next, use the matched models to41

make a forecast of a different injection scenario in Tank 1, and,42

finally, a different injection scenario in Tank 2 (2.86×1.3×0.01943

m), which represents an altogether different stratigraphic section.44

Results and conclusion: The simulation model can qualitatively45

match the observed free-phase and dissolved CO2 plume migration46

and convective mixing. Quantitatively, simulations are accurate dur-47

ing the injection phase but their concordance decreases with time.48

Using local data reduces the time required to history match, although49

the forecasting capability of matched models is similar. The sand-50

water-CO2(g) system is very sensitive to effective permeability and51

capillary pressure changes; where heterogeneous structures are present,52

accurate deterministic estimates of CO2 migration are difficult to obtain.53

Keywords: CO2 storage, geologic carbon sequestration, two-phase flow,54

numerical simulations, history matching, FluidFlower55

1 Introduction56

CO2 capture and subsequent geologic carbon sequestration (GCS) is a57

climate-change mitigation technology that can be deployed at scale to offset58

anthropogenic CO2 emissions during the energy transition (Marcucci et al.,59

2017; European Academies Science Advisory Council (EASAC), 2018; Celia,60

2021; Intergovernmental Panel on Climate Change (IPCC), 2022). In GCS,61

reservoir simulation, including coupled flow and geomechanics, is the primary62

tool used to assess and manage geologic hazards such as fault leakage (e.g.,63

Caine et al., 1996; Ingram and Urai, 1999; Nordbotten and Celia, 2012; Zoback64

and Gorelick, 2012; Juanes et al., 2012; Jung et al., 2014; Vilarrasa and Car-65

rera, 2015; Saló-Salgado et al., 2023) and induced seismicity (e.g., Cappa and66

Rutqvist, 2011; Zoback and Gorelick, 2012; Juanes et al., 2012; Ellsworth,67

2013; Verdon et al., 2013; Alghannam and Juanes, 2020; Hager et al., 2021). In68

response to the inherent uncertainties associated with modeling and simulation69

of CO2 storage (Nordbotten et al., 2012), building confidence in the forecasting70

capabilities of simulation models requires calibration (or, synonymously, his-71

tory matching), a process that involves updating the reservoir model to match72
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field observations as they become available (Oliver and Chen, 2011; Doughty73

and Oldenburg, 2020).74

History matching is an ill-posed inverse problem (Oliver and Chen, 2011).75

This means that multiple solutions (i.e., parameter combinations) exist that76

approximate the data equally well. Automated techniques such as Markov77

chain Monte Carlo, randomized maximum likelihood or ensemble-based meth-78

ods can be used to quantify uncertainty in history-matched models, especially79

in combination with surrogate models to reduce forward model computational80

time (see Aanonsen et al., 2009; Oliver and Chen, 2011; Jagalur-Mohan et al.,81

2018; Jin et al., 2019; Liu and Durlofsky, 2020; Santoso et al., 2021; Landa-82

Marbán et al., 2023, forthcoming, and references therein). In practice, however,83

it may be difficult to ensure that the chosen simulation model provides the best84

possible forecast. This is due to different subsurface conditions, the inability85

to include all sources of uncertainty in the models, incomplete field data and86

limited time for history matching.87

In the laboratory, intermediate-scale (∼meter) experiments have been used88

to study the physics of petroleum displacement (e.g., Gaucher and Lindley,89

1960; Brock and Orr, 1991; Cinar et al., 2006) and contaminant trans-90

port (e.g., Silliman and Simpson, 1987; Wood et al., 1994; Lenhard et al., 1995;91

Fernández-Garćıa et al., 2004). Similar 2D and 3D flow rigs have recently been92

applied to CO2 storage, providing a link between core-scale measurements and93

field observations:94

Kneafsey and Pruess (2010) found the impact of convective dissolution95

to be significant, using a page-size Hele-Shaw cell and numerical simula-96

tions. Neufeld et al. (2010) studied the scaling of convective dissolution and97

found it to be an important mechanism in the long-term trapping of injected98

CO2 in an idealized site. Wang et al. (2010) used a 3D setup to investigate99

the ability of electrical resistivity tomography to identify localized leaks. Tre-100

visan et al. (2014, 2017) focused on the impact of structural and residual101

trapping. In homogeneous sands, they found that previous trapping models,102

such as the Land (1968) model, can approximate the residually trapped gas103

saturation (R2 > 0.6). Studying an heterogeneous aquifer characterized by a104

log-normal distribution of six different sand facies, they report that trapping105

efficiency increased significantly due to structural trapping. A strong control106

of sand heterogeneity on upward migration of CO2 was also found by Lassen107

et al. (2015). Krishnamurthy et al. (2019, 2022) devised a novel technique to108

automate the process of beadpack/sandpack deposition and generate realis-109

tic depositional fabrics; they concluded that grain-size contrast and bedform110

architecture significantly impact CO2 trapping. Subsequently, Ni et al. (2023)111

presented modified invasion-percolation simulations and reported that bed-112

form architecture can impact CO2 saturation if enough grain-size contrast is113

present. Askar et al. (2021) used a ∼8 m-long tank to test a framework for114

GCS monitoring of CO2 leakage. These studies employed homogeneous glass115

beads or sands, or focused on heterogeneities and bedform architectures in the116

aquifer layer; structural complexity was minimal.117
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In this paper, we use quasi-2D, intermediate-scale experiments of CO2 stor-118

age to evaluate, quantitatively, the forecasting capability of history-matched119

simulation models against well-defined spatial data. An attempt was made120

to recreate realistic basin geometries, including stacking of storage reservoirs,121

faults, caprock and overburden. We simulate each of the three presented exper-122

iments with three versions of a numerical model, each with increasing access to123

local petrophysical measurements. These different versions are denoted model124

1 (M1), model 2 (M2) and model 3 (M3). This allows us to assess (1) the value125

of local information of the system, expressed in terms of sand petrophysical126

measurements, during history matching, and (2) transferability or forecasting127

capability of our matched simulation models, when tested against a differ-128

ent experiment. The term concordance is used to evaluate agreement between129

experiments and observations (Oldenburg, 2018).130

2 Physical Experiments131

The physical experiments of CO2 injection are conducted using the Flu-132

idFlower rigs. These rigs are meter-scale, quasi-2D tanks with transparent133

Plexiglass panels designed and built in-house at the University of Bergen134

(Fig. 1). Here, we used two tanks, with dimensions 89.9 × 47 × 1.05 cm and135

2.86 × 1.3 × 0.019 m (referred herein to as Tank 1 and Tank 2, respectively).136

Different geologic settings are constructed by pouring unconsolidated sands137

with desired grain sizes into the water-saturated rigs. The rigs have multiple138

ports which allow flushing out fluids after a given CO2 injection, such that139

multiple injections can be conducted in the same setting. The location of the140

ports can be adjusted to accommodate different injection scenarios. A variety141

of techniques have been developed by UiB engineers in order to build complex142

structures such as folds and faults.143

Below, we summarize the petrophysical measurements, experimental setup,144

geologic model/porous media construction and experimental schedule. Details145

on the conceptualization of the FluidFlower rigs and technical information are146

given in Fernø et al. (2023, this issue) and Eikehaug et al. (2023, this issue),147

while the full description of the physical experiment in Tank 1 and ex-situ148

measurements are provided by Nordbotten et al. (2022); Haugen et al. (2023,149

this issue). Further details on the experiment in Tank 2, as well as results150

of the international benchmark study (IBS), are provided by Flemisch et al.151

(2023, this issue).152

2.1 Sand petrophysical properties153

Measurements on the employed Danish quartz sands were conducted using154

specialized equipment to determine average grain size (d), porosity (ϕ), perme-155

ability (k), capillary entry pressure (pe) and drainage and imbibition saturation156

endpoints (denoted as connate water saturation, Swc, and trapped gas satu-157

ration, Sgt). The methodology is described by Haugen et al. (2023, this issue)158

and obtained values are provided in Tab. 1. Sands C, D, E and F are very159



Springer Nature 2021 LATEX template

Simulation of geologic CO2 storage: Value of Local Data and Forecasting 5

Fig. 1 Overview of the FluidFlower rigs and porous media used in the physical experiments.
a Medium FluidFlower rig (Tank 1). b Snapshot during sand pouring to build the porous
medium used in Experiments A1 and A2 in Tank 1 (Haugen et al., 2023, this issue). c Front
view of porous medium in Tank 1, with lithologies in white and injector location shown with
a red star. The length and height correspond to the porous medium. Note the fixed water
table at the top. d Overview of the main FluidFlower rig (Tank 2), showing the back panel
with sensor network. e Porous medium in Tank 2, used for Experiment B1, with lithologies
in white. Location of injectors and Boxes A, B and C for analysis are shown with a red star
and gray boxes, respectively. Length and variable height correspond to the porous medium.

well sorted, sand G is well sorted, and sand ESF is moderately sorted (Hau-160

gen et al., 2023, this issue). We verified that Darcy’s law is applicable in our161

system using the Reynolds number (Re):162

Re =
ud

ν
(1)

where u is the fluid discharge per unit area, d the mean grain diameter, and163

ν the kinematic viscosity of the fluid. From our simulation results, matched164

to experimental observations, max(Re) ≤ 1, which ensures the applicability of165

Darcy’s law (e.g., Bear, 1972).166

2.2 Experimental setup167

The front and back panels of the FluidFlower are mounted on a portable168

aluminum frame, such that boundaries are closed on the sides and bottom (no169

flow). The top surface is open and in contact with fluctuating atmospheric170

pressure (Fig. 1). A fixed water table above the top of the porous medium171

was kept throughout the experiments conducted here. The experimental setup172

incorporates mass flow controllers to inject gaseous CO2 at the desired rate,173

and a high-resolution digital camera with time-lapse function (Haugen et al.,174

2023, this issue).175
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Table 1 Petrophysical properties for used quartz sands, as obtained from local, ex-situ
measurements. Porosity and permeability are the average from two measurements for each
sand, with a maximum difference between measurements of 0.02 (ϕ) and estimated 20%
uncertainty (k). Measured gas column heights for sands E-G were 0, so pe could not be
directly measured. Experimental error in pe, Swc and Sgt was not quantified. A detailed
description of the methodology and petrophysical values is provided by Nordbotten et al.
(2022); Haugen et al. (2023, this issue).

Sand type d (std) [mm] ϕ [-] k [D] pe [mbar] Swc Sgt

ESF 0.2 (0.11) 0.435 44 15 0.32 0.14
C 0.66 (0.09) 0.435 473 3 0.14 0.1
D 1.05 (0.14) 0.44 1110 1 0.12 0.08
E 1.45 (0.19) 0.45 2005 - 0.12 0.06
F 1.77 (0.31) 0.44 4259 - 0.12 0.13
G 2.51 (0.63) 0.45 9580 - 0.1 0.06

Experiments were conducted in 2021 and 2022 in Bergen (Norway) at176

room temperature (≈ 23 ◦C) and ambient atmospheric pressure. Temperature177

changes were minimized as much as possible, but maintaining a constant tem-178

perature was not possible in the available laboratory space. The fluids and179

sands were set in the FluidFlowers using the following procedure:180

1. The silica sands are cleaned using an acid solution of water and HCl to181

remove carbonate impurities.182

2. The FluidFlower rig is filled with deionized water.183

3. Sands are manually poured into the rig using the open top boundary, in184

order to construct the desired porous medium.185

4. A pH-sensitive, deionized-water solution containing bromothymol blue,186

methyl red, hydroxide and sodium ions is injected through multiple ports187

until the rig is fully saturated. This enables direct visualization of CO2188

gas (white), dissolved CO2 (yellowish orange to red), and pure water (dark189

teal).190

5. 5.0 purity (99.999%) CO2 is injected as gaseous phase at the desired rate.191

CO2 is injected through dedicated ports directly into the rig (Fig. 1).192

6. After the injection phase, injection ports are closed and CO2 migration193

continues.194

7. Once the experiment is finished, the rig can be flushed with deionized water195

and the process can start again from step 4.196

Full details on the fluids are given in Fernø et al. (2023, this issue) and Eikehaug197

et al. (2023, this issue). Below, we refer to the pH-sensitive solution in the rigs198

as “dyed water”.199

2.3 Porous media geometries200

The geometries of the porous media used in this paper aim to recreate the trap201

systems observed in faulted, siliciclastic, petroleoum-bearing basins around202

the world, given the geometrical constraints of the FluidFlowers and manual203

sand pouring (Fernø et al., 2023; Eikehaug et al., 2023, this issue). Features204
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such as folds, faults and unconformities were built in both Tanks 1 and 2. The205

construction of faults, shown in Fig. 1b and detailed in Haugen et al. (2023, this206

issue), requires a minimum effective “fault-plane” thickness; hence, our fault207

structures are thicker than natural faults with the same displacement (Childs208

et al., 2009). Fine sands (d ≈ 0.2 mm) are used to represent sealing or caprock209

formations.210

The geometry in Tank 1 (Fig. 1c) contains three main high-permeability211

reservoirs (F sand). The bottom and middle F sand are separated by a seal212

(ESF sand), while the middle and top are separated by the C sand and con-213

nected through a higher permeability fault (refer to sect. 2.1 for pertrophysical214

properties). The fault separates the bottom section into two compartments.215

The bottom and top F sand provide anticlinal traps for the CO2 to accumulate216

in.217

The geometry in Tank 2 (Fig. 1e) was specifically motivated by the struc-218

ture of North Sea reservoirs and petroleum basins. From bottom to top, it219

contains two sections of decreasing-permeability reservoirs capped by two main220

sealing layers. A fault separates the bottom section into two compartments,221

while two faults separate the top section into three compartments. Each fault222

has different petrophysical properties: The bottom fault is a heterogeneous223

structure containing ESF, C, D, F and G sands, the top-left fault is an imper-224

meable structure made of silicone and the top-right fault is a conduit structure225

containing G sand.226

2.4 Experimental injection schedule227

The injection schedules for experiments in Tanks 1 and 2 are provided in228

Tab. 2. Injection ports have an inner diameter of 1.8 mm.229

Table 2 Schedules for the three CO2 injection experiments simulated in this work. IR is
injection rate, while Ii denotes injector (port) number. A five-minute ramp-up and
ramp-down was applied in Experiments A1 and A2 in Tank 1. Total duration of conducted
experiments and simulations is 48h (A1), 5h (A2) and 120h (B1). Location of injection
wells is provided in Fig. 1.

Experiment A1 A2 B1

IR [ml/min] t [hh:mm:ss] IR t IR t

0.1 (I1) 00:00:00 0.1 (I1) 00:00:00 10.0 (I1) 00:00:00
2.0 00:05:00 2.0 00:05:00 10.0 05:00:00
2.0 00:50:00 2.0 04:43:44 0.0 05:00:01
0.0 00:55:00 0.0 04:48:33 10.0 (I2) 02:15:00
0.1 (I2) 01:09:11 0.0 05:00:00 10.0 05:00:00
2.0 01:14:11 0.0 05:00:01
2.0 02:29:11 0.0 120:00:00
0.0 02:34:00
0.0 48:00:00
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3 Numerical simulations230

3.1 Model setup231

The isothermal simulations presented in this work were performed with the232

MATLAB Reservoir Simulation Toolbox, MRST (Krogstad et al., 2015; Lie,233

2019; Lie and Møyner, 2021). Specifically, we used the black-oil module, which234

is based on fully implicit solvers with automatic differentiation, and assigned235

properties of water to the oleic phase, such that the gaseous phase (CO2236

only) can dissolve in it. Vaporization of water into the gas phase and chemical237

reactions are not considered, because they are not primary controls on fluid238

migration for our operational setup and analysis time.239

In addition to structural and dissolution trapping, we also considered resid-240

ual trapping (Juanes et al., 2006) to be consistent with local measurements241

showing nonzero trapped gas saturation (sect. 2.1). This is achieved through242

hysteretic relative permeability curves for the nonwetting (gas) phase (see243

sect. 3.2). Our implementation in MRST follows ECLIPSE’s technical descrip-244

tion (Schlumberger, 2014), and Killough’s (1976) model is used to compute245

the scanning curves (Saló-Salgado et al., 2023, forthcoming). Physical diffusion246

was also included through the addition of a diffusive flux term with a scalar,247

constant coefficient in the computation of the total CO2 flux (Bear, 1972).248

The simulator requires very small time-steps (seconds to minutes) due to249

the buoyancy of CO2 at atmospheric conditions and high sand permeabilities250

(Tab. 1). Linear solver time was reduced by means of AMGCL (Demidov and251

Rossi, 2018; Lie, 2019), an external, pre-compiled linear solver. The greatest252

challenge was the convergence of the nonlinear solver, which required many253

iterations and time-step cuts. This is consistent with the groups working in the254

FluidFlower international benchmark study (Flemisch et al., 2023, this issue).255

Next, we describe the computational grids for experiments in Tanks 1 and 2,256

PVT properties and boundary conditions. Petrophysical properties are specific257

of each model version and are detailed in sect. 3.2.258

3.1.1 Computational grids259

A front panel image of the porous medium was used to obtain layer contact260

coordinates through a vector graphics software (Fig. 2a). These contacts were261

then imported into MATLAB to generate the computational grids using the262

UPR module (Berge et al., 2019, 2021)(Fig. 2b,d). The grids were generated in263

2D and then extruded to 3D (using a single cell layer) to account for thickness264

and volume. Note that, in Tank 1, where the porous medium has dimensions265

of 89.7×47×1.05 cm, the thickness (space between the front and back panels)266

is constant (10.5 mm). Tank 2, which is significantly larger (porous medium267

dimensions 2.86×1.3×0.019 m), has a thickness of 19 mm at the sides; however,268

it varies towards the middle due to forces exerted by the sand and water, to269

a maximum of 28 mm. A thickness map obtained after initial sand filling was270

used to generate our variable-thickness mesh via 2D interpolation (Fig. 2c).271

Also, the top surface of the porous medium is not flat (height = 130± 3 cm).272
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Fig. 2 Simulation grids overview. a front panel view of Tank 1, where the layer contacts have
been highlighted in white. b front view of simulation grid for experiments in Tank 1, with
lithologies indicated and colored based on petrophysical properties (see sect. 3.2). Location
of injection wells is shown in red. c thickness map of simulation grid for experiments in Tank
2. d front view of simulation grid for experiments in Tank 2, with lithologies indicated and
colored based on petrophysical properties. Location of injection wells is shown in red.

Our composite Pebi grids (Heinemann et al., 1991) have a Cartesian back-273

ground and are refined around face constraints (contacts and faults) as well as274

cell constraints (injection wells) (Berge et al., 2019, 2021). We generated mul-275

tiple grids to test the finest grid we could afford to simulate Experiment B1276

in Tank 2 with. Our grid has a cell size h ≈ 5 mm and 151,402 cells (Fig. 2d).277

The grid used for Tank 1 has a similar cell size (h ≈ 4 mm and 27,200 cells),278

which was chosen to reduce grid-size dependencies when applying our matched279

models to Experiment B1.280

3.1.2 PVT properties281

Consistent with experimental conditions, our simulations are conducted at282

atmospheric conditions (T = 25 C), where the CO2 is in gaseous state. We283

employed a thermodynamic model based on the formulations by Duan and284

Sun (2003) and Spycher et al. (2003); Spycher and Pruess (2005) to calculate285

the composition of each phase as a function of p, T . The implementation286

for a black-oil setup is described in Hassanzadeh et al. (2008) and references287

therein. Given the boundary conditions (sect. 3.1.3) and dimensions of our288

experimental porous media, pore pressure changes (∆p) are very small in our289

simulations (max ∆p ≪ 1 bar). Hence, the fluid properties remain similar290

to surface conditions, where the water and CO2 have, respectively, a density291

of 997 and 1.78 kg/m3, and a viscosity of 0.9 and 0.015 cP. The maximum292

concentration of CO2 in water is ≈ 1.5 kg/m3.293
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3.1.3 Initial, boundary and operational conditions294

Our porous media are fully saturated in water at the beginning of CO2 injec-295

tion. No-flow boundary conditions were applied everywhere except at the top296

boundary, which is at constant pressure and includes a fixed water table a297

few cm above the top of the porous medium. Injection is carried out via wells298

completed in a single cell at the corresponding coordinates. The diameter of299

injection wells is 1.8 mm in both Tank 1 and Tank 2, which operate at a300

constant flow rate (see sect. 2). The simulation injection schedule follows the301

experimental protocol, provided in Tab. 2. Note that injection rates in our sim-302

ulations of Experiment A1 and A2 were slightly adjusted during the calibration303

procedure, as explained in sect. 3.3 and 4.304

3.2 Simulation model305

Three different model versions, denoted model 1 (M1), model 2 (M2) and model306

3 (M3), are used throughout this study to evaluate the value of local data in307

forecasting subsurface CO2 migration. Each successive model was constructed308

based on access to an increasing level of local data, with M1 having access309

to the least data and M3 having access to the most data. The model-specific310

parameters are limited to the following:311

• Petrophysical properties (porosity, permeability, capillary pressure and rel-312

ative permeability), which depend on available local data and are described313

in this section.314

• The molecular diffusion coefficient (D). Models 1-3 were calibrated using315

the same value, D = 10−9 m2/s. Additionally, model 3 was also calibrated316

with D = 3× 10−9 m2/s. Accordingly, where required we denote model 3 as317

M3,1 and M3,3.318

• Injection rate. Experiments in Tank 1 were conducted at a very low injection319

rate (IR = 2 ml/min, see Tab. 2). Given that the mass flow controllers320

used in Tank 1 may be inaccurate for this rate, the injection rate was also321

modeled as an uncertain parameter. Model calibration was achieved with322

IR ∈ [1.6, 1.8] ml/min for all three models.323

All other model characteristics, including the grid and numerical discretiza-324

tion, remain unchanged. Below, we describe the starting petrophysical values325

for each of our three simulation models. Note that the experimental geom-326

etry in Tank 1, used for matching, only contained sands ESF, C, E and F.327

Properties for sands D and G are also provided because they were required to328

simulate the experiment in Tank 2 (Fig. 1).329

3.2.1 Model 1 (M1)330

For this model, local petrophysical data were limited to a measure of the aver-331

age grain size (d; see sect. 2.1 and Tab. 1). Hence, petrophysical properties were332

estimated from published data in similar silica sands. Porosity was selected333

from data in Beard and Weyl (1973) and Smits et al. (2010) for moderately to334
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well-sorted sands. Permeability was obtained from fitting a Kozeny-Carman335

model to data in Beard and Weyl (1973) and Trevisan et al. (2014). The result-336

ing equation has the form k = βd2ϕ3, where β equals 12,250 in our fit with d337

in mm and k in D. Obtained porosity and permeability values are provided in338

Table 3.339

Table 3 Initial porosity and permeability for model 1. See main text for estimation details.

Sand type d [mm] ϕ [-] k [D]

ESF 0.2 0.37 25
C 0.66 0.38 290
D 1.05 0.40 930
E 1.45 0.39 1530
F 1.77 0.39 2280
G 2.51 0.42 5720

Capillary pressure curves were computed as described below:340

1. Capillary pressure measurements in a similar system were obtained from341

the literature. In this case, Plug and Bruining (2007) measured capillary342

pressure curves on the unconsolidated quartz sand-CO2-distilled water sys-343

tem at atmospheric conditions. We used their measurements on sand packs344

with an average particle size between 0.36 and 0.41 mm, which are closest345

to the C sand in our experiments (Fig. 3a).346

2. A Brooks and Corey (1964) model of the form pc = pe(S
∗
w)

− 1
λ was fitted to347

these data, where pe is the nonwetting phase entry pressure at Sw = 1, λ =348

2.6 and S∗
w = Sw−Swc

1−Swc
is the normalized water saturation with irreducible349

or connate water saturation Swc. This fit led to our reference curve, pcr350

(Fig. 3a).351

3. The capillary pressure depends on the pore structure of each material, such352

that sands with different grain sizes require different pc curves. The capillary353

pressure variation can be modeled by means of the dimensionless J-function354

proposed by Leverett (Leverett, 1941; Saadatpoor et al., 2010): J(Sw) =355

pc

σ cos θ

√
k
ϕ , where σ is the surface tension and θ the contact angle. Assuming356

the same wettability and surface tension for different sand regions, and357

the same shape of the pc curve, the capillary pressure for any given sand358

(pcs) can be obtained from the reference curve as pcs(Sw) = pcr(Sw)
√

krϕs

ksϕr
359

(Fig. 3b).360

Drainage relative permeabilities were obtained from CO2-water measure-361

ments by DiCarlo et al. (2000), who used water-wet sandpacks with 0.25 mm362

grain size. Specifically, we used the data reported in their Fig. 4 and 5, and363

fitted Corey-type functions (Corey, 1954; Brooks and Corey, 1964) of the form364

krw = (S∗
w)

a and krg = c(1 − S∗
w)

b (Fig. 3c). The fitted exponents a and b365

are 4.2 and 1.4, respectively, while c is 0.97. We assumed that the difference366

in relative permeability of different sands is the result of different irreducible367
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Fig. 3 Multiphase flow properties for model 1. a Capillary pressure measurements and ref-
erence curve using a Brooks and Corey (1964) function. b Initial capillary pressure curves,
computed from the reference curve using Leverett scaling (see main text). c Relative perme-
ability data (squares and S5

w model) and our fitted Corey model. d,e Relative permeability
of gas and water, respectively. The drainage curve is shown as a solid line, while the bound-
ing imbibition curve is shown for sands ESF and G as a discontinuous line. No relative
permeability hysteresis was considered for the water phase.

water saturation only (see Fig. 3d,e). For each of our sands, Swc was obtained368

from Timur (1968) as Swc = 0.01 × 3.5ϕ1.26

k0.35 − 1, where ϕ is in percent and k369

in mD. This model was used to compute Swc for both the pc and kr curves.370

In CO2 storage, secondary imbibition occurs where the water displaces371

buoyant gas at the trailing edge of the CO2 plume, disconnecting part of372

the CO2 body into blobs and ganglia and rendering them immobile (Juanes373

et al., 2006, and references therein). This means that the maximum water374

saturation that can be achieved during imbibition equals 1 - Sgt (the trapped375

gas saturation). Here, we used measurements in sandpacks from Pentland et al.376

(2010) to determine Sgt. In particular, we fitted Land (1968)’s model with the377

form S∗
gt =

S∗
gi

1+CS∗
gi
, where S∗

g =
Sg

1−Swc
= 1 − S∗

w, Sgi is the gas saturation at378

flow reversal, and C is Land’s trapping coefficient with a value of 5.2 in our379

fit. Although Pentland et al. (2010) report that the best fit is achieved with380
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the Aissaoui (1983) and Spiteri et al. (2008) models (cf. their Fig. 5), Land’s381

model was chosen here given that most relative permeability hysteresis models382

build on this one (see next paragraph).383

Nonwetting phase trapping contributes to irreversibility of the relative per-384

meability and capillary pressure curves (hysteresis). Here, we accounted for this385

mechanism in the gas relative permeability due to its importance in subsur-386

face CO2 migration (Juanes et al., 2006, and references therein). In particular,387

we used Land’s (1968) model to compute the bounding imbibition curve (see388

Fig. 3d), where Sgt is obtained as described above, and Killough’s (1976)389

model to characterize the scanning curves. In Killough’s model, the scanning390

curves are reversible, such that the relative permeability at Sg < Sgi no longer391

depends on the displacement type.392

3.2.2 Model 2 (M2)393

This model had access to local, ex-situ measurements of single-phase petro-394

physical properties, i.e., porosity and intrinsic permeability (see sect. 2.1 and395

Tab. 1). Comparing with Tab. 3, it can be seen that our estimation for model396

1 above was correct to the order of magnitude, but resulted in smaller values:397

porosity ∈ [85, 93]% and permeability ∈ [53, 84]% of the local measurements.398

Capillary pressures and relative permeabilities were obtained using the399

same procedure described above for model 1. The slight differences with respect400

to the curves shown in Fig. 3b,d,e come from the porosity and permeability401

values used in the Leverett scaling and to determine Swc, which were taken402

from Tab. 1 instead. The obtained curves for model 2 are provided in Fig 4.403

Fig. 4 Multiphase flow properties for model 2. b Initial capillary pressure curves, computed
from the reference curve using Leverett scaling (see main text). b,c Relative permeability of
gas and water, respectively. The drainage curve is solid, while the bounding imbibition curve
is shown for sands ESF and G as a discontinuous line. No relative permeability hysteresis
was considered for the water phase.
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3.2.3 Model 3 (M3)404

This model was allowed access to all local, ex-situ measurements (see Tab. 1).405

Initial porosity and permeability remain unchanged with respect to model406

2. Capillary pressure curves were obtained by scaling the reference curve407

described in sect. 3.2.1 and shown in Fig. 3a using the measured entry pres-408

sure (sect. 2.1). The scaling followed the model pcs(Sw) = pcr(Sw)
pe

per
, where409

pe is the measured entry pressure for each sand, and per is the reference curve410

entry pressure. The obtained curves are shown in Fig. 5a.411

Fig. 5 Multiphase flow properties for model 3. b Initial capillary pressure curves, com-
puted according to the entry pressure determined experimentally (see sect. 2.1). b,c Relative
permeability of gas and water, respectively, according to the endpoints determined exper-
imentally (sect. 2.1). The drainage curves are solid, while the bounding imbibition curves
are shown as a discontinuous line. The inset in b is a zoom view around the trapped gas
saturation. No relative permeability hysteresis was considered for the water phase.

Relative permeabilities were computed following the same procedure412

described for model 1 above. In this case, however, each sand type was assigned413

the measured Swc and Sgt values (see Tab. 1). This led to differences in both414

the drainage and imbibition curves, as shown in Fig. 5.415

3.3 Model calibration416

Concordance between results obtained with each simulation model (1 to 3)417

and the validation experiment in Tank 1 (A1, see sect. 2.4) is quantitatively418

assessed by comparing the following quantities (see Fig. 6):419

1. At t = 55 min (end of injection in port I1): Areas occupied by free-phase420

CO2, and dyed water with dissolved CO2 in the bottom F reservoir.421

2. At t = 154 min (end of injection in port I2): Areas occupied by free-phase422

CO2, and dyed water with dissolved CO2, in the middle and top F reservoirs.423

3. Time at which the first finger touches the tank bottom.424

4. Time at which the first finger (sinking from the top F reservoir) touches425

the middle C sand.426
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Experimental values for points 1-2 were obtained by computing areas from427

time-lapse images using a vector-graphics software. Careful visual inspection of428

color-enhanced images was used to distinguish between free-phase CO2 (white)429

and dyed water with dissolved CO2 (yellowish orange to red), and to identify430

the times for points 3-4 above. Error in experimental values was estimated431

to be ≤ 5%, based on repeated measurements (points 1-2), and ∼ 5 min,432

based on timelapse image comparison (points 3-4). In the simulation models,433

the threshold gas saturation and CO2 concentration in water used to compute434

areas were Sg > 10−3 and CCO2
> 15%(Cmax

CO2
) ≈ 0.2 [kg/m3], respectively.435

The C value was chosen after a shape comparison of the region with dissolved436

CO2. A smaller value of CCO2
> 0.05 [kg/m3] was selected to determine finger437

times for points 3 and 4 above. Fig. 6 shows an overview of the experimental438

values for points 2 and 3, while Fig. 12 in Sect. 4.2 shows the full comparison439

with the history-matched/calibrated simulation models.440

Fig. 6 Front panel view of Tank 1, showing quantities and times for history matching of
numerical models to Experiment A1. a shows areas with gaseous CO2 (free-phase, black
contours) and dyed water with dissolved CO2 (green contours) at the end of injection.
Location of injection ports is shown with a star. b shows the time and location where the
first finger touches the bottom of the tank (white arrow), as well as the different lithological
units. Note the three F reservoirs labeled ‘inf’, ‘mid’ and ‘sup’, mentioned in the text and
other figures.

The experiment was conducted first. Afterwards, the process consisted of441

running simulation models 1 to 3, in parallel, starting with the petrophysical442

properties described in sect. 3.2. Given the number of uncertain variables (four443

petrophysical properties for each lithological unit, the diffusion coefficient and444

the injection rate) and the time required to complete a single simulation, a445

manual history matching method was employed. At the end of each run, quan-446

tities 1-4 above were compared and one or more properties were manually447

changed based on observed concordance and domain knowledge. During the448

first few runs, only quantities 1 and 2 above were compared. After obtaining449

a satisfactory areal match, petrophysical properties were further adjusted to450

match quantities 3 and 4.451

4 Results452

In sect. 4.1, we present the results of the first simulation of Experiment A1453

with each model and property values detailed in sect. 3.2. Then, we detail the454
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calibration of simulation models using Experiment A1, and assess the value of455

local data to history-match CO2 storage simulation models (sect. 4.2). Finally,456

we apply these matched models to Experiment A2, analog for a longer injection457

in the same geology (sect. 4.3.1), and to Experiment B1, analog for a larger-458

scale injection in a different geologic setting (sect. 4.3.2). We use simulations of459

Experiments A2 and B1 to assess the forecasting ability of simulation models460

in different conditions.461

4.1 Initial model results462

Fig. 7 shows the comparison between Experiment A1 and the first run with463

each model, at times indicated in sect. 3.3. Numerous differences are evident464

between the experiment and models 1 and 2, while model 3 is much closer to465

the experiment. In particular, models 1 and 2 overestimate the extent of CO2-466

rich brine and underestimate the amount of gaseous CO2 in all F reservoirs467

(refer to Fig. 6 for location). Model 3 approximates much better the areal468

extent of gaseous CO2 in all regions, as well as the CO2-rich brine in the middle469

and upper F reservoirs. Model 2 provides the closest finger migration times470

(points 3 and 4 in sect. 3.3), although this was not evaluated in the first run,471

as discussed below.472

Petrophysical properties for models 1 and 2 were obtained from references473

in sect. 3.2, which also used silica sands with similar grain sizes. However,474

despite the relatively homogeneous nature of our quartz sands, model 3 is sig-475

nificantly more concordant. This result stems from natural sand variability476

and highlights the difficulty in establishing general, representative elementary477

volume-scale properties for porous media (see, for instance, Hommel et al.,478

2018; Schulz et al., 2019, for a discussion on intrinsic permeability). Addi-479

tionally, results in Fig. 7 highlight the need for conducting sand/rock-specific480

measurements, even in the case of well-sorted, homogeneous sediments.481

4.2 Manual history matching and value of local data482

Fig. 8 shows convergence of areas occupied by free gas (Ag) and water with483

dissolved CO2 (Ad), according to sect. 3.3. Each iteration corresponds to a484

successive model with manually updated parameters, and the different F sand485

regions evaluated in each panel (a) to (f) are provided in Fig. 6. With the486

exception of Ad in the upper compartment, model 3 is accurate since the487

beginning, and all areas were satisfactorily matched after four iterations. Con-488

versely, model 1 and 2 were significantly off the experimental reference during489

the first few iterations. Model 2, however, was accurate after five iterations,490

while model 1 required seven iterations to give satisfactory areal estimates. The491

mean absolute error (MAE) over the six areal quantities presented in Fig. 8 is492

evaluated in Fig. 9, where it can be seen that, while all models are accurate493

towards the end (MAE ∈ [5− 10] cm2), that required a six-fold improvement494

in models 1 and 2, but only two-fold in model 3. As mentioned in sect. 3.3,495

CCO2 > 15%(Cmax
CO2

) ≈ 0.2 [kg/m3] was used as threshold to determine areas.496
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Fig. 7 Comparison between Experiment A1 in Tank 1 (left column) and first run simulation
results with models 1-3. Color map in simulation plots refers to CO2 concentration in water,
according to color bar. The white contours in simulation plots indicate Sg = 10−3. a-d:
end of injection in port 1. e-h: end of injection in port 2. i-l: time at which the first finger
touches the tank bottom. m-p: time at which the first finger touches the middle C sand.

While the absolute values and error would change with a different CCO2
thresh-497

old, we checked that the relative accuracy of our calibrated models does not498

with both CCO2
> 0.01 and 0.1 [kg/m3].499

Agreement between simulations and experimental observations is readily500

seen in Fig. 10, where the 1:1 line indicates perfect concordance. The degree of501

concordance can be quantified by means of Lin’s concordance correlation coef-502

ficient (CCC) (Lin, 1989; Oldenburg, 2018), which, for N -valued observation503

(x) and model (y) vectors (the six areal quantities) is computed as:504

CCC =
2σxy

σ2
x + σ2

y + (x− y)2
(2)

Where x and y are the means, σ2
x and σ2

y the variances, and σxy the covariance,505

all calculated using 1/N normalization. Results in Fig. 10 show that model506

calibration results in very good concordance for all models (CCC ≥ 0.99).507

Convergence of quantities 3 and 4 in sect. 3.3, the times at which the first508

finger touches the rig bottom and the middle C sand, respectively, are pro-509

vided in Fig. 11. These times were only evaluated after a satisfactory areal510

match for quantities in Fig. 8 was achieved. Therefore, areas no longer change511

much in the last few iterations in Fig. 8. In Fig. 11, it can be seen that model512

2 and 3, which incorporated local intrinsic permeability measurements, were513

significantly closer to our experimental reference than model 1. Initially, how-514

ever, we observed that sinking of gravity fingers in the experiment was faster515

than our model values by a factor of ≈ 2. A satisfactory match of all quantities516

evaluated was achieved after 11, 8, and 7 iterations for models 1-3, respectively.517
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F sup

F

F

Fig. 8 Convergence of areas occupied by free gas (Ag, left column) and water with dissolved
CO2 (Ad, right column), during the calibration of models 1-3 with Experiment A1. Ad

includes area with gaseous CO2 (see Fig. 6). Each iteration represents a new simulation
run, and the experimental reference (E) is shown as a black line. Refer to Fig. 6 for region
location, and to sect. 3.3 for calibration procedure. a,b: upper F sand. c,d: middle F sand.
e,f : lower F sand.

Overall, we find that model 3, with access to local single-phase and mul-518

tiphase flow properties, is closer to the experimental reference (i.e., more519

concordant) from the start. Model 1 started farthest, and required significantly520

more effort for calibration. After the calibration process, all models achieve521

very good concordance (CCC ≥ 0.99), based on evaluated quantities (Fig. 10).522

The calibration shown in Fig. 8, 9, 10, 11 employs D = 10−9 m2/s in all model523

versions (M1 to M3). Injection rates (IR) started at 2.0 ml/min for all three524

models, and were 1.6 ml/min, 1.8 ml/min and 1.75 ml/min, respectively, at the525

end of the calibration. IR is slightly different because the goal was to obtain526

the best match with each model, considering IR to be an uncertain variable.527

In sect. 4.3 below, the same IR is used to make forecasts with all three models.528

Tab. 4 compares the starting and final (matched) key petrophysical vari-529

ables for each model. The models were successfully calibrated by adjusting530
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Fig. 9 Convergence of mean absolute error over the six areal quantities measured during
the calibration process. The error is computed with respect to experimental values. See Fig. 8
for areas measured, and refer to sect. 3.3 for calibration procedure.

Fig. 10 Concordance between successive model iterations and the experiment, based on
six areal measures evaluated during the calibration. Lin’s CCC (Lin, 1989) is shown in the
key of each subplot, computed according to Eq. 2. a: Model 1. b: Model 2. c: Model 3.

intrinsic permeability and the capillary pressure curves (same shape, but scaled531

to higher or lower pe) only. It was found that CO2 migration was most sensitive532

to the properties of the F sand, were most of the CO2 migration occurs, as well533

as the ESF seal, which structurally traps the CO2 plume. In our matched mod-534

els, pe of ESF is about twice the measured value; this was required because the535

minimum saturation at which we can define pe and ensure numerical conver-536

gence is Sg ≈ 10−4. Reality, however, is closer to a jump in pc from 0 to pe at537

an infinitesimally small Sg. Additionally, we found that concordance improved538

when using different values for the C and F sands in different model regions.539

In the case of the C sand, the explanation lies in the fault construction pro-540

cess, which may reduce porosity with respect to “natural” sedimentation of541

stratigraphic layers (Haugen et al., 2023, this issue). The increase in F sand542

permeability was required to match finger migration times, and is possibly543

compensating the absence of mechanical dispersion in the simulations. This is544
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Fig. 11 Convergence of times at which the first finger touches the bottom of the rig (a)
and the middle C sand (b), during the calibration of models 1-3 with Experiment A1. Refer
to sect. 3.3 for calibration procedure.

discussed in sect. 5. Our calibrated values are within the same order of magni-545

tude of the ex-situ measurements (Tab. 4) and history-matched values for the546

porous medium in Tank 2 (Landa-Marbán et al., 2023, forthcoming).547

Fig. 12 shows gas saturation (Sg) and CO2 concentration (CCO2
) maps at548

times at which quantities 1-4 described in sect. 3.3 are evaluated. Snapshots are549

provided for model 3 only, since all three calibrated models were qualitatively550

very similar. It can be seen that CO2 migration is successfully approximated551

by our numerical model. In detail, however, some differences are apparent:552

Firstly, sinking of CO2-rich water from the bottom injector and horizontal553

migration along the bottom of the rig is faster in the model. This is due to554

the higher permeability that our numerical model requires in order to match555

the gravity fingering advance (cf. Tab. 4). Secondly, the experiment shows556

that denser, CO2-rich water sinks with a rather compact front and closely557

spaced, wide fingers. Our model with constant D = 10−9 m2/s approximates558

all gravity-driven migration of the CO2-rich water through thinner fingers,559

with the CO2-saturated region receding with Sg. To better represent fingering560

widths, we also matched model 3 with D = 3× 10−9 m2/s, used in sect. 4.3.2.561

4.3 Transferability: model forecasts562

A key question after history matching a flow simulation model is whether the563

physical description has actually been improved, or whether parameters have564

been modified to match a set of specific observations only. By applying the565

history-matched models to a different injection protocol (Experiment A2 in566

Tank 1; refer to Tab. 2), and subsequently to a different geometry (Experiment567

B1 in Tank 2), this can be assessed to some extent.568

4.3.1 Analog for a longer CO2 injection in the same geologic569

setting570

This case illustrates concordance of our history matched models in a much571

longer injection in the same geology (Experiment A2). Before simulating this572
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Table 4 Petrophysical properties for used quartz sands in Experiment A1. Methodology
for local measurements is provided by Haugen et al. (2023), while starting property
modeling is described in sect. 3.2. For each sand, measured (first row), initial (superscript
i) and final (superscript f) values for each of our models is shown. For sand C, the second
permeability value refers to the fault, if different from the rest. For sand F, the second
permeability value refers to the middle F layer, if different from the rest. For model 3,
where property values are different, M3,1 refers to the calibration with D = 10−9 m2/s
and M3,3 refers to D = 3× 10−9 m2/s.

Sand type / model ϕ [-] k [D] pe [mbar] Swc [-] Sgt [-]

ESF 0.435 44 15 0.32 0.14
M i

1 0.37 25 31.4 0.09 0.1468
M f

1 0.37 6 31.4 0.09 0.1468
M i

2 0.435 44 25.6 0.09 0.1468
M f

2 0.435 44 25.6 0.09 0.1468
M i

3 0.435 44 15 0.32 0.14
M f

3 0.435 15 30 0.32 0.14

C 0.435 473 3 0.14 0.1
M i

1 0.38 293 9.3 0.03 0.1565
M f

1 0.38 293, 27 4.6 0.03 0.1565
M i

2 0.435 473 7.8 0.03 0.1565
M f

2 0.435 473, 158 2.6 0.03 0.1565
M i

3 0.435 473 3 0.14 0.1
M f

3 0.435 473, 118 4.5 0.14 0.1

E 0.45 2005 - 0.12 0.06
M i

1 0.39 1528 4.1 0.01 0.16
M f

1 0.39 1528 0.5 0.01 0.16
M i

2 0.45 2005 3.86 0.01 0.16
M f

2 0.45 3008 0.58 0.01 0.16
M i

3 0.45 2005 0.33 0.12 0.06
M f

3,1 0.45 2406 0.33 0.12 0.06

M f
3,3 0.45 3208 0.33 0.12 0.06

F 0.44 4259 - 0.12 0.13
M i

1 0.39 2277 3.3 0.01 0.16
M f

1 0.39 6540, 2907 0 0.01 0.16
M i

2 0.44 4259 2.62 0.01 0.16
M f

2 0.44 6814, 4259 0 0.01 0.16
M i

3 0.44 4259 0 0.12 0.13
M f

3,1 0.44 7240, 4685 0 0.12 0.13

M f
3,3 0.44 9796, 4259 0 0.12 0.13

case, we observed that the trapped gas column against the fault in the exper-573

iment was different than what could be achieved with our previous pe for574

models 1-3 (Tab. 4). Because the capillary properties of the C sand in the fault575

were not directly involved in Experiment A1, we increased pe in our calibrated576

models for that specific region (pe = 5 mbar against the lower F sand, and 3.5577
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Fig. 12 Comparison between Experiment A1 in Tank 1 (left column) and simulation results
with model 3 after calibration (gas saturation shown in middle column, and CO2 concentra-
tion shown in right column). Location of injection ports shown by black stars in d. D = 10−9

m2/s. a-c: End of injection in lower port. d-f : End of injection in upper port. g-i: Time at
which the first finger touches the rig bottom. j-l: Time at which the first finger touches the
middle C layer.

mbar against the middle F sand). All other parameters were taken from the578

values calibrated to match Experiment A1.579

Evaluation was performed at the end of injection, at t = 4 h 48 min, with580

a single run with models 1-3. IR and D were set to the same value in all three581

models: 1.7 ml/min and 10−9 m/s2, respectively. The experimental result is582

shown in Fig. 13a, while the simulation with model 3 is depicted in Fig. 13b,c.583

We observe that the general distribution of CO2 is close to the experimental584

truth. However, the experiment shows a compact sinking front of the CO2-rich585

water without fingers; in our model, gravity fingering is apparent at this stage586

and fingers are close to the bottom of the rig. Additionally, CO2-saturated587

brine touches the right boundary in the upper F reservoir, which does not588

occur in the experiment. This is due to capillary breach of the C sand above589

the middle F reservoir, as shown in Fig. 13b, and can be avoided by reducing590

the gas saturation value at which pe is defined, or by increasing pe.591

The comparison of areal quantities is provided in Fig. 14, and demonstrates592

good to very good concordance. Model 2 (MAE = 16 cm2, CCC = 0.996) and593

3 (MAE = 14.54 cm2, CCC = 0.996) are similarly accurate and slightly better594

than model 1 (MAE = 20.18 cm2, CCC = 0.988), but there are no marked595

differences.596
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Fig. 13 Comparison between Experiment A2 in Tank 1 (a) and simulation results with
model 3 (b,c) at the end of the injection phase (t = 4h 48 min).

(a) (b)

Fig. 14 a: Comparison of areas occupied by free gas (Ag) and water with dissolved CO2

(Ad) for Experiment A2 in Tank 1. Experimental reference shown with a star (E). Ag (F
mid, left) not shown because values are very close to 0. Refer to Fig. 6 or Fig. 13a for region
location. b: Concordance plot for each of the three models, using the same areal quantities
as in a. Lin’s CCC (Lin, 1989) is shown in the key, according to Eq. 2.

4.3.2 Analog for a larger-scale CO2 injection in a different597

geologic setting598

Finally, we compare the forecasting ability of our calibrated models599

against Experiment B1, conducted in a larger-scale, more complex geology600

(Fig. 1e) (Flemisch et al., 2023, this issue). Similar to sect. 4.3.1, our goal is601

to assess the forecasting ability of our calibrated models—without changing602

their properties. However, given that sand D controls migration in the lower603

fault (see Fig. 2e) and it was not present in our calibrated models, we allowed604

one change for models 1 and 2, which did not have access to local pc measure-605

ments. This means that we ran an initial simulation of this experiment with606

model 1 and 2, and then adjusted the pc curve of the D sand. The selected607

curve lies at ≈ 1
3 of the pc(Sw) shown in Fig. 3 and Fig. 4, respectively.608

Next, we evaluate concordance of models 1-3 by comparing them to the609

experimental truth after a single run. Evaluation is performed over the total610

duration of the experiment (120 h), which is simulated with the same IR (10611

ml/min) and D (10−9 m2/s) in all three models (M1, M2, M3,1). Additionally,612

a run with D = 3× 10−9 m2/s was completed with model 3 (M3,3) to better613

approximate finger widths, as noted in sect. 4.2.614
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Gas saturation and CO2 concentration maps at the end of injection with615

model 1 are shown in Fig. 15a and Fig. 15b, respectively. The full visual616

comparison is provided in Fig. 16. We make the following observations:617

• At the end of injection (t = 5 h), all three models forecast some migration618

of CO2 into Box B. Model 2 (Fig. 16c) and 3 (Fig. 16d) underestimate the619

amount of CO2, while model 1 (Fig. 16b) overestimates the amount of CO2620

in the top C sand.621

• Also at the end of injection, all models forecast faster sinking of the CO2-622

charged water tongue arising from the lower injector. This is due to the623

higher F sand permeability required to match finger advance (see sect. 4.2),624

particularly in model 3 with D = 3× 10−9 m2/s.625

• The speed at which CO2-rich fingers sink is slightly faster in our mod-626

els, compared to the experiment. As expected, model 3, with a higher627

diffusion coefficient, displays thicker fingers, with closer widths to the exper-628

iment. Similar to our previous observations, the numerical models cannot629

approximate the compact, CO2-rich water front closely trailing the fingers.630

• Dissolution of CO2 is underestimated by models 1 and 2, while it is closer,631

but overestimated, by model 3.632

Consistent with our approach described in sect. 3.3, quantitative analysis633

is provided by means of areal quantities over time in Fig. 17. Experimental634

values were obtained via segmentation of timelapse images, and the data was635

reported on a 1×1 cm grid where 0 is pure water, 1 is water with dissolved CO2,636

and 2 is gaseous CO2. The segmentation procedure is explained in Nordbotten637

et al. (2023), this issue. We then obtained the areas of each phase within Box638

A and B to generate Fig. 17 (refer to Fig. 15a for box location).639

In Box A, which contains the main F reservoir and ESF seal, we observe640

very good concordance (accurate areas) during injection. Afterwards, model 3641

withD = 3×10−9 m2/s continues to follow the experiment closely, whereas the642

others overestimate gaseous CO2. Note that the PVT properties of our fluids643

are the same in all models; differences arise due to (1) higher sand F Swc in644

model 3, and higher sand F k in model 2 and especially model 3 (D = 3×10−9
645

m2/s), compared to model 1, which allow greater convective mixing (Ennis-646

King and Paterson, 2005)(Tab. 4); and (2) lower pe and higher k of sand ESF647

in model 2 (Tab. 4), which allows some CO2 migration into the seal (Fig. 16).648

In Box B (Fig. 17d-f), model 1 and model 3 with D = 10−9 m2/s are able649

to approximately track the experimental truth during injection. However, our650

models without dispersion cannot capture the areal increase of CO2-rich water651

that occurs afterwards (cf. Fig. 16).652

To put these results in perspective, Fig. 18 provides a comparison with653

results submitted by the international benchmark study (IBS) participants,654

as well as Experiment B1 (Flemisch et al., 2023, this issue). Fig. 18 presents,655

for each datapoint, mean Wasserstein distances to experiments and forecasts656

(simulations by IBS participants). Specifically, the Wasserstein metric (W )657

measures “the minimal effort required to reconfigure the probability mass of658
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Fig. 15 Comparison between Experiment B1 in Tank 2 (a) and simulation model 1 (b,c)
at the end of injection (t = 5h). Circles in a denote the location of injection ports.

one distribution in order to recover the other distribution” (Panaretos and659

Zemel, 2019). We expect W → 0 for two samples from the same distribution,660

given enough values, and two samples to be more similar or concordant the661
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Fig. 16 Comparison between Experiment B1 in Tank 2 (leftmost column) and CO2

concentration maps for simulation models 1-3 (middle-left, middle-right and rightmost,
respectively). D = 10−9 m2/s (model 1 and 2), D = 3 × 10−9 m2/s (model 3). The white
contours in simulation plots indicate Sg = 10−3. a-d end of injection. e-h t = 15h. i-l
t = 24h. m-p t = 48h. q-t t = 120h.

closer W is to 0. To calculate distances shown in Fig. 18, the cell mass density662

in a 1×1 cm grid was estimated for all simulations and experiments, and then663

normalized. Therefore, this metric provides a measure of the overall degree of664

agreement (i.e., in the whole domain). Resulting distances were dimensional-665

ized using the total CO2 mass in the system, such that the units are grams ×666

centimeter, with values < 100 gr·cm and < 50 gr·cm representing good concor-667

dance and very good concordance, respectively. Details and code are provided668

by Flemisch et al. (2023, this issue). In Fig. 18, it can be seen that M1-M3 are669

comparable to or better than the best forecasts by IBS participants. M1 and670

M3,1, in particular, achieved very good concordance.671

Further evaluation of simulation model concordance, including comparison672

with model results before calibration, mass quantities and error measures, is673

provided in Appendix A. From this analysis (sect. 4.3 and Appendix A), we674

find that:675

• All matched models approximate well CO2 migration and distribution in676

the domain, seal capacity, and onset of convective mixing. M1 and M3,1 are677

most concordant to experiments (Fig. 18).678

• Calibrated models are able to accurately estimate specific quantities during679

the injection phase, yet they accumulate higher errors later on (Fig. 17 and680

Appendix A.2).681

• Similar to Experiment A1, the calibration procedure significantly improved682

the concordance ofM1 andM2 with the experiment (Fig. A1 and Fig. 16). In683
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Fig. 17 Comparison of areas occupied by each phase during the first 72h of case B1.
Experimental mean (E) and standard deviation (std) obtained from four experimental runs
with identical protocol, while the results for models 1-3 are for a single run with each
matched model. For M3, two cases are shown: D = 10−9 m2/s (M3,1) and D = 3 × 10−9

m2/s (M3,3). Top row shows areas in Box A, and bottom row shows areas in Box B. a,d
gaseous CO2. b,e dissolved CO2 (includes area with gaseous CO2). c,f pure water.

Box A, calibration also improved concordance for M3 (Fig. A2 and Fig. A6).684

Overall, however, matched M3,1 and M3,3 are less concordant than their ini-685

tial versions, which were already in very good agreement with the experiment686

(Fig. A3 and Fig. 18).687

In summary, calibrated models are transferable to a different operational688

setting or geologic structure, as long as sediments and trap systems remain689

the same (Experiment A2 and Box A in Experiment B1). Where reservoir con-690

nectivity is provided by heterogeneous structures with uncertain properties,691

accurate deterministic estimates of CO2 migration are unlikely; models cali-692

brated elsewhere (Experiment A1) were not accurate in our test (Box B in693

Experiment B1). Given unlimited computational time, the forecasting capa-694

bility of numerical models calibrated with published data appears similar to695

those having access to local measurements; the main value of local data lies696

in reducing the time required for history matching. Obtained results suggest697

that history matching worsened M3 forecasts in a different setting (Experi-698

ment B1). Therefore, forecasts in a given geologic setting may benefit more699

from local measurements and accurate physics, rather than history matching,700
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(a) (b) (c)

(d) (e)

Fig. 18 Wasserstein distances to experiments and forecasts (simulations). Colored circles
show forecasts by IBS groups, and results with calibrated models 1-3 are presented with light
gray markers. In each subplot, the vertical axis shows the mean distance between a given
datapoint and the forecasts (considering the IBS participants only), while the horizontal
axis shows the mean distance between a given datapoint and the experiments. Markers not
present fall outside of the axes limits. a: 24h. b: 48h. c: 72h. d: 96h. e: 120h.

unless historical data of the same setting is available. This is because CO2-701

brine flow is very sensitive to variations in petrophysical properties such as702

capillary pressure, which will change in different areas, even if the geology is703

similar.704

5 Discussion705

In the FluidFlower, strong buoyancy and high permeability lead to persistent706

appearance and disappearance of fluid phases, as the gas migrates upward707

and dissolves in the water; coupled with other two-phase flow nonlinearities,708

these aspects make this problem difficult to solve numerically (e.g., Lie, 2019).709

Comparison between the number of nonlinear iterations and the strength of710

different physical mechanisms (flow rates, buoyancy, capillarity and dissolu-711

tion) are presented in Appendix B. A clear correlation can be seen between712

flow rates and number of iterations. However, buoyancy, capillarity and disso-713

lution all appear to be playing a role, and it is not straightforward to discern714

which effect dominates; hence, this is a topic that requires further study. We715

note that difficulties with the convergence of the nonlinear solver have been716

reported by all participants in the international benchmark study (Flemisch717

et al., 2023, this issue). As hinted in sect. 3.1, we addressed this by optimiz-718

ing linear solver time, reducing the time-step length, increasing the number719
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of time-step cuts and relaxing MRST’s maximum normalized residual where720

required.721

In a 2D isotropic medium and assuming uniform flow, the hydrodynamic722

dispersion coefficient (D
h
) can be modeled as D

h
=

[
αLu 0
0 αTu

]
, where αL and723

αT are the longitudinal and transverse dispersivity, respectively, and u is the724

average Darcy velocity (Bear, 1972). Assuming dispersivities ≥ 10−3 − 10−2
725

m (Garabedian et al., 1991; Gelhar et al., 1992; Schulze-Makuch, 2005) and726

u ≈ 3 × 10−6 m/s (from our simulations), we get D
h
∈ [3 × 10−9, 3 × 10−8]727

m2/s or larger; this means that D
h
≥ D for the timescales considered (Riaz728

et al., 2004; Rezk et al., 2022). We also note that numerical dispersivity is on729

the order of the cell size (h ≈ 4 mm in Tank 1, and ≈ 5 mm in Tank 2), so730

it is likely smaller than hydrodynamic dispersion. Numerical diffusion can be731

approximated as uh, which yields maximum values ∼ O(10−7 m2/s) (water732

phase). However, using the mean of the 75th percentile flow velocity over all733

time-steps, we obtain ∼ O(10−9 m2/s). Therefore, we estimate that numerical734

diffusion is lower than physical diffusion almost everywhere in our simula-735

tions. Previous work suggested that hydrodynamic dispersion in homogeneous736

sediments can be accounted for by increasing D (Riaz et al., 2004, 2006), as737

done here. However, our analysis shows that the spreading of CO2-rich water738

during convective mixing can be loosely, but not accurately, represented by739

molecular diffusion. Given (1) the dominance of convective mixing on solubility740

trapping (Ennis-King and Paterson, 2005; Neufeld et al., 2010; MacMinn and741

Juanes, 2013); (2) heterogeneity of many natural reservoirs, which increases the742

importance of dispersion (Riaz et al., 2006; Bear, 2018); and (3) the accelera-743

tion of CO2 dissolution due to dispersion, as observed here and by others (e.g.,744

Hidalgo and Carrera, 2009), it is important to quantify the balance between745

diffusion and dispersion to estimate CO2 trapping.746

Our study of CO2 injection and migration in unconsolidated sands at atmo-747

spheric p, T conditions captures the CO2-water system dynamics at short to748

intermediate timescales: buoyancy-driven flow and structural trapping (Bachu749

et al., 1994; Bryant et al., 2008; Hesse and Woods, 2010; Szulczewski et al.,750

2013), residual trapping (Juanes et al., 2006; Burnside and Naylor, 2014) and751

convective mixing and dissolution trapping (Weir et al., 1996; Ennis-King and752

Paterson, 2005; Riaz et al., 2006; Neufeld et al., 2010; Hidalgo et al., 2012;753

MacMinn and Juanes, 2013; Szulczewski et al., 2013). Due to the very large754

sand permeability (102 − 104 D), convective mixing and dissolution dominate755

CO2 trapping. With respect to values at ∼ 1 km depth (p ∼ 100 bar, T ∼ 40756

C), the dynamic viscosity and density of CO2 are ≈ 1/3 and 3 × 10−3. Con-757

versely, previous studies with similar setups used analogous fluids with density758

and viscosity ratios similar to supercritical CO2-brine (Trevisan et al., 2017;759

Krishnamurthy et al., 2022). Dynamics observed in these systems are similar760

to ours, with vertical migration of CO2 dominated by buoyancy and lateral761

spreading of CO2 plumes with a main tongue at the top of the aquifer or high762

permeability layer. A quantitative scaling analysis of the FluidFlower (Tank763
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2) was performed by Kovscek et al. (2023), who showed that scaling of physi-764

cal mechanisms to the field scale is possible. Compared to three CO2 storage765

projects (Northern Lights, Sleipner and In Salah) the vertical dimension of766

the storage reservoir is exaggerated 2 to 3 times. Temporally, 1 h in the Flu-767

idFlower is equivalent to ∼ 100 − 400 y in the field; thus, the experiment in768

Tank 2 (120 h) covers well the injection and post-injection periods. Similar to769

the FluidFlower, Kovscek et al. (2023) estimate the onset of convective mix-770

ing to occur during injection in high-permeability formations like the Utsira771

Sand (Sleipner). This analysis demonstrates that observations made in the772

FluidFlower can be used to describe field-scale fluid dynamics and quantify773

forecasting accuracy.774

Our models retained some error at the end of the calibration phase, which775

is a known problem of manual history matching (Oliver and Chen, 2011).776

Consistent with previous findings (e.g., Fisher and Jolley, 2007), results show777

that model 2 and 3, which had access to local data, achieved faster match to the778

experimental truth than model 1 (sect. 4.2). However, all models seem to have779

similar forecasting capability (sect. 4.3). Subsurface heterogeneity and time780

constraints may explain why, in practice, it is critical to include local data to781

achieve history matching, and, especially, concordant forecasting (e.g., Gosselin782

et al., 2003; Fisher and Jolley, 2007; Myers et al., 2007; Kam et al., 2015; Avansi783

et al., 2016). Calibration with Experiment A1 decreased overall concordance784

of model 3 to Experiment B1 (but improved concordance in Box A), compared785

to forecasts with initial (measured) parameter values. We interpret this to be786

the result of fluid migration in Experiment A1 being controlled by different787

units than in Box B in Experiment B1. Therefore, local measurements are788

paramount, especially if historical data in the trap system of interest are not789

available.790

Additionally, we did not quantify uncertainty in history-matched models791

due to the availability of a ground truth. In general, however, this is necessary792

to manage reservoir operations (e.g., Aanonsen et al., 2009; Oliver and Chen,793

2011; Jagalur-Mohan et al., 2018; Jin et al., 2019; Liu and Durlofsky, 2020;794

Santoso et al., 2021, and references therein). It is also important to note that795

history-matched models may have grid-size dependencies (see Appendix C),796

which may require that the grid used to make forecasts, if different or encom-797

passing additional regions, maintain a similar resolution. Finally, multiphase798

flow in poorly-lithified sediments is non-unique (Haugen et al., 2023, this issue),799

which also contributes to uncertainty. Therefore, it seems prudent to adopt800

a probabilistic perspective when estimating subsurface CO2 migration. This801

is consistent with results in Fig. 18 and Flemisch et al. (2023, this issue):802

in the highly-resolved and geologically simple FluidFlower (compared to the803

subsurface), forecasts by different simulation groups show large spread.804
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6 Conclusions805

We performed experiments (sect. 2) and numerical simulations (sect. 3) of CO2806

migration in poorly-lithified, siliciclastic sediments at the meter scale. Three807

simulation model versions, with access to different levels of local data, were808

manually history-matched to the experiments (sect. 4.1, 4.2), and then used809

to make forecasts (sect. 4.3). The main findings are:810

1. The time required to history match model 3 (access to both single-phase811

and multiphase measurements) is lower than model 2 (access to local single-812

phase measurements), which is lower than model 1 (no access to local813

petrophysical measurements).814

2. All simulation models achieve a satisfactory qualitative match through-815

out the experiments. Quantitatively, forecasting capability of models 1-3816

appears similar: in specific domain regions, models were close to the817

experimental truth during CO2 injection, and accumulated larger errors818

afterwards, especially where heterogeneous structures control CO2 migra-819

tion.820

3. Overall forecasts with model 3 after calibration in a similar, but not identi-821

cal, geologic setting were less accurate than forecasts made with measured822

values. This emphasizes the importance of local measurements and history823

matching in the same geologic setting.824

4. The addition of a constant molecular diffusion coefficient allows matching825

convective finger widths to experimental observations. However, simulations826

without dispersion cannot approximate the compact, CO2-rich sinking front827

closely trailing convective fingers in our experiments.828

Simulation models were not always accurate. Given the degree of control in829

our study, it seems prudent to quantify uncertainty when assessing subsurface830

CO2 migration in the field using numerical models. Obtained results suggest831

that confidence can be increased by obtaining local data, quantifying petro-832

physical parameter uncertainty, testing sensitivity to petrophysical parameters833

in different model regions, using historical data from the same setting and834

including post-injection data when history matching, and incorporating mul-835

tiple scenarios of CO2 migration, particularly where heterogeneous structures836

are at play.837
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Appendix A Additional analysis of simulation876

model concordance with877

Experiment B1878

A.1 Results with initial model parameters879

Fig. A1 compares Experiment B1 and concentration maps from simulations880

with initial parameters, for each of the three model versions considered. Quali-881

tatively, all models estimate the location of the two main gas plumes correctly,882

but it is clear that model 1 and 2 are less concordant to the experiment than883

model 3. This is particularly true in the upper left of the domain, where CO2884

migration is controlled by the heterogeneous fault. Similar to results presented885

https://github.com/fluidflower
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in sect. 4.1, model 3 is already very close to the experiment, although the886

advance of convective fingers is slower.

Fig. A1 Comparison between Experiment B1 in Tank 2 (leftmost column) and CO2

concentration maps for simulation models 1-3 (middle-left, middle-right and rightmost,
respectively) with initial parameters. D = 10−9 m2/s (model 1 and 2), D = 3× 10−9 m2/s
(model 3). a-d end of injection. e-h t = 15h. i-l t = 24h. m-p t = 48h. q-t t = 120h.

887

Concordance between our initial models and the simulation is shown in888

Fig. A2 by means of the ratio between the model and experimental areas for889

different quantities in Box A and B (see Fig. 15 for box location). Values below890

1 indicate that the model underestimates the areal extent of a given quantity,891

while values above 1 indicate that the model overestimates it. During the first892

48-72h, all models except M3,1 are reasonably close to the experiment in Box893

A. Afterwards, M1, M2 and M3,3 forecast earlier dissolution of the CO2 plume,894

while M3,1 forecasts later dissolution. In Box B, concordance is relatively good895

for M3 during the first 48h, but model accuracy diminishes with time for all896

model versions.897

Further comparison between our initial model results and experimental val-898

ues are provided in Fig. A3, where we evaluate mean Wasserstein distances899

to the international benchmark study (IBS) participants’ forecasts and exper-900

iments (Flemisch et al., 2023, this issue). Fig. A3 is consistent with Fig. A1,901

where it can be seen that M3 is already very close to the experiment, and is902

similarly concordant or more concordant than the best of the IBS participants.903

A.2 Calibrated models904

First, we provide the total mass of CO2 in the computational domain in905

Fig. A4, and the mass in Boxes A and B in Fig. A5.906
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Fig. A2 Ratios between model (AMi
) and experimental mean (AE) areas occupied by each

phase. Experimental mean was obtained from four experimental runs with identical protocol,
while the results for models 1-3 are for a single run. For M3, two cases are shown: D = 10−9

m2/s (M3,1) and D = 3× 10−9 m2/s (M3,3). Top row shows Box A, and bottom row shows
Box B. Ratios for gaseous CO2 in Box B are not computed because experimental values are
0. a gaseous CO2. b,d dissolved CO2 (includes area with gaseous CO2). c,e pure water.

Fig. A3 Wasserstein distances to experiments and forecasts (simulations). Colored circles
show forecasts by IBS groups, and results with initial models 1-3 are presented with light
gray markers. In each subplot, the vertical axis shows the mean distance between a given
datapoint and the forecasts (considering the IBS participants only), while the horizontal
axis shows the mean distance between a given datapoint and the experiments. Markers not
present fall outside of the axes limits. See sect. 4.3.2 for details.
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Fig. A4 Total mass of CO2 for our simulations of Experiment B1 presented in sect. 4.3.2.
Results are provided for models 1 to 3. For M3, two cases are shown: D = 10−9 m2/s (M3,1)
and D = 3× 10−9 m2/s (M3,3).

Fig. A5 Mass of CO2 in Boxes A and B defined in Fig. 1e, for our simulations of Experiment
B1 presented in sect. 4.3.2. Results are provided for models 1 to 3. For M3, two cases are
shown: D = 10−9 m2/s (M3,1) and D = 3× 10−9 m2/s (M3,3).

Next, in Tab. A1, the following measures are compared with quantities907

estimated from the experiment via segmentation of timelapse images (Nord-908

botten et al., 2023, this issue). These measures correspond to the sparse data909

requested to participants of the FluidFlower IBS (Flemisch et al., 2023, this910

issue):911

1. time of maximum mobile free phase in Box A912

2. mass of mobile CO2(g), immobile CO2(g), dissolved CO2, and CO2 in the913

seal (in any phase), in Box A, 72 h after injection start (2a-d)914

3. the same quantities as 2. for Box B (3a-d)915

4. time at which m (defined below) exceeds 110% of the width of Box C916

5. total mass of CO2 in the ESF seal, in Box A, at t = 120 h917

Convective mixing in Box C (see Fig. 1e) is reported as the integral of the918

magnitude of the gradient in relative concentration of dissolved CO2 (Flemisch919

et al., 2023):920
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m(t) =

∫
C

∣∣∣∣∇(
χw
CO2

χw,max
CO2

)∣∣∣∣dx (A1)

where χw
CO2

is the mass fraction of CO2 in water, and the dissolution limit921

is χw,max
CO2

. Note that quantity 4, based on m, cannot be provided with full922

accuracy based on experimental data, so an uncertain lower and upper bound923

is provided instead. Therefore, error is not computed in Tab. A1.924

Relative error is evaluated with respect to the experimental mean (E) as925

εi(%) = 100× |Ei−MJ,i|
Ei

, where i is a given measure and J refers to any of the926

models 1-3. In Tab. A1, it can be seen that all models accumulate some error in927

most of the quantities reported. The maximum errors are ≈ 140% for models928

1-2 and < 100% for model 3. Model 1 is more concordant in the uncertain929

region (Box B; see sect. 4.3.2 as well), while models 2 and 3 are more accurate930

in Box A, the region where the calibration performed with Experiment A1 is931

more meaningful. Overall, M3,1 does marginally better.932

We provide additional analysis in Fig. A6, which shows ratios between933

model and experimental areas, similar to Fig. A2. As shown in sect. 4.3.2,934

M3,3 is most concordant in Box A, while M1 and M3,1 do better in Box B.935

Compared to Fig. A2, the maximum ratio is reduced. In Box A (t < 72h),936

model 1 and 2 are less accurate than in Fig. A2, but this is not representative937

of their concordance in the whole domain (sect. 4.3.2).938

Appendix B Nonlinear solver number of939

iterations940

According to fluid migration in the FluidFlower, flow dynamics are initially941

dominated by injection rates, then by buoyancy of the gas phase, and finally942

by capillarity and dissolution. In Fig. B7, we present, for the experiment in943

Tank 2, the relationship between the number of iterations, the maximum Darcy944

velocity (u) and the maximum concentration rate (Ċ), evaluated as dC/dt,945

as a function of time. Additionally, we estimated the maximum values of the946

dimensionless Reynolds (Re, see Eq. 1), Capillary (Ca) and Bond (Bo) numbers947

during and after injection (e.g., Bear, 1972):948

Ca =
µαuα

σ
(B2)

949

Bo =
∆ρgk

σ
(B3)

Where µ is the dynamic viscosity, u the Darcy velocity, σ the interfacial950

tension, ∆ρ the density difference, g the gravity, k the permeability, and951

subscript α denotes a generic fluid phase. Max Bo ∼ O(10−3) and remains952

constant in our system. Max Ca ∼ O(10−6), ∼ O(10−7) for water and953

∼ O(10−6), ∼ O(10−8) for gas (during and after injection, respectively), while954

maxRe ∼ O(10−2) for water and ∼ O(10−1), ∼ O(10−2) for gas (during and955

after injection, respectively).956
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Fig. A6 Ratios between calibrated model (AMi
) and experimental mean (AE) areas occu-

pied by each phase in case B1. Experimental mean was obtained from four experimental runs
with identical protocol, while the results for models 1-3 are for a single run with each model.
For M3, two cases are shown: D = 10−9 m2/s (M3,1) and D = 3× 10−9 m2/s (M3,3). Top
row shows Box A, and bottom row shows Box B. Ratios for gaseous CO2 in Box B are not
computed because experimental values are 0. a gaseous CO2. b,d dissolved CO2 (includes
area with gaseous CO2). c,e pure water.

From Fig. B7, a correlation between max |uh,g| is apparent during injec-957

tion. The number of iterations increases significantly after an injection port958

becomes active, and also when CO2 spills out of the lower reservoir and starts959

migrating along the lower fault (see Fig. 15); this occurs at t ≈ 215 min and960

t ≈ 250 for M1 and M3,3, respectively. Peaks in Ċ appear at the onset of961

injection, but we do not observe significant variations otherwise. Values from962

the dimensionless groups are indicative of high flow rates (Re close to 1), rel-963

atively strong capillary forces, compared to viscous forces (Ca ∼ O(10−6) or964

smaller), and appreciable buoyancy. We identify that high flow rates and sud-965

den appearance/disappearance of fluid phases challenge the nonlinear solver966

during injection. Buoyancy and capillarity forces, which are active throughout967

the simulation, also impact convergence, but it is not straightforward to iden-968

tify if one exerts a greater control on the number of iterations. After injection,969

we observe difficulties between t ≈ 315 and 1440 min in M1, and t ≈ 720 and970

1440 in M3,3. Our analysis does not reveal why, so this is a topic that warrants971

further study.972
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Fig. B7 Number of iterations and maximum values in the simulation domain for various
quantities, as a function of time. Results are provided for M1 (left column) and M3,3 (right
column). a,b Number of nonlinear solver iterations. c,d Horizontal Darcy velocity. e,f Ver-
tical Darcy velocity. g,h Concentration rate (Ċ).

Appendix C Comparison of simulation results973

with multiple grid resolutions974

This section provides two comparisons of concentration maps obtained with975

model 3 after the calibration presented in sect. 4.2:976

1. For Experiment A1, we compare two grid sizes: h = 4 mm, as shown in the977

paper, and a coarser grid with h = 8 mm (Fig. C8).978

2. For Experiment B1, we compare three grid sizes: h = 5 mm, used through-979

out the paper, and two coarser grids with h = 10 mm and h = 20 mm,980

respectively (Fig. C9). Note that, in the three simulations in Fig. C9, a981

total of 8.13 g of CO2 were injected; this is slightly smaller than the 8.55982

g actually injected in the experiment and in our simulations in the rest of983

the paper.984

It can be seen that, for the calibrated parameter set (Tab. 4), the coarser mod-985

els maintain a general agreement with the finer ones (and the experimental986

solution). However, some differences are clear even in this qualitative compar-987

ison, including (1) smaller extent of the CO2 plume, (2) lower dissolution, (3)988

lower number of fingers and finger widths, and (4) different CO2-rich finger989
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sinking speed. Therefore, the calibration process is somewhat cell-size depen-990

dent, which has implications for applying history matched models from e.g.,991

pilot tests to field-scale CO2 storage projects.992

Fig. C8 Concentration maps from our simulations of Experiment A1 with model 3. Results
with two grids are shown: h = 4 mm (a, c, e, g) and h = 8 mm (b, d, f, h).
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Fig. C9 Concentration maps from simulations of Experiment B1 with model 3. Results
with three grids are shown: h = 5 mm (a, d, g, j, m), h = 10 mm (b, e, h, k, n) and h = 20
mm (c, f, i, l, o).
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